
An Effective Tensor Regression with Latent Sparse Regularization

Guannan Liang
Department of Computer Science and Engineering, University of Connecticut

Ko-Shin Chen
Department of Computer Science and Engineering, University of Connecticut

Tingyang Xu
Tencent AI Lab, Shenzhen, China

Jun Yan
Department of Statistics, University of Connecticut

Minghu Song
Department of Biomedical Engineering, University of Connecticut

Jinbo Bi
Department of Computer Science and Engineering, University of Connecticut

Abstract

As advances in data acquisition technologies, longitudinal analysis is facing challenges of ex-

ploring complex feature patterns from high-dimensional datasets as well as modeling potential

temporal correlations and lagged effects. We propose a tensor-based model to analyze multi-

dimensional data. It simultaneously discovers patterns in features and reveals past temporal

points having impact on current outcomes. The model coefficient, a k-mode tensor, is decom-

posed into a summation of k tensors of the same dimension. To accomplish feature selection, we

introduce the tensor ‘latent F-1 norm’ as a grouped penalty in our formulation. Meanwhile, the

proposed model also takes into account within-subject correlations by involving a tensor-based

quadratic inference function. We provide an asymptotic analysis of our model when the sample

size approaches to infinity. To solve the corresponding optimization problem, we develop a lin-

earized block coordinate descent algorithm and prove its convergence result for a fixed sample

size. Computational results on synthetic datasets, real-file fMRI and EEG problems demonstrate

the superior performance of the proposed approach over existing techniques.
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1. Introduction

In this paper we introduce a tensor-based quadratic inference function (TensorQIF) machine

learning model that can be used to analyze longitudinal data and select features efficiently.

Longitudinal data consists of repeated sample observations during a given time period. They

appear in a variety of areas, from finance [1, 20] to scientific research [1, 15, 24], health-care and5

medicine [4, 7, 22].

One notable feature of longitudinal data is repeated-measurement within each subject. Thus

observed responses are generally dependent and longitudinal correlation among different out-

comes must be considered to obtain correct predictions. There are several extended generalized

linear models that can be applied to time-dependent data under different assumptions. Diggle10

et al. have provided a comprehensive overview of various models. For fitting marginal model,

generalized estimating equation - GEE [13] and quadratic inference function - QIF [17] are com-

mon statistical approaches. They are generally more accurate than those of classic regression

analysis that assumes independently and identically distributed (i.i.d.).

In GEE model, the correlation structure of outcomes is presumed and the so-called ‘working’15

correlation matrix, R, is specified. However, in practice, the true correlation is often unknown.

The GEE model with misspecified working correlation matrix will no longer result optimal

estimation of coefficients [5]. In addition, the inverse of the matrix R is essential that may cause

poor estimation when R has high dimensions [18]. To overcome these disadvantages, Qu et al.

suggested the QIF model for which R−1 is approximated by a linear combination of several20

basis matrices. This method ensures that the estimator always exists and does not require any

estimation for nuisance parameters associated with correlations. On the feature selection criteria,

penalized GEE [8] and penalized QIF [2] are proposed.

In this work, we study the lagged effect of covariates on outcomes. In many studies, it is

necessary and insightful to model simultaneously the correlation among outcomes and the lagged25

effects of covariates, which is the so-called Granger causality [9]. For example, Shen et al. pointed

out evidences of brain diseases may appear in the functional magnetic resonance imaging (fMRI)

of an early diagnosis before clear symptoms are identified. Recent graphical Granger models such

as [1, 15] ignore the temporal correlations. Xu et al. have modeled such correlation through the
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Figure 1: Case for K = 3. A 3-way tensor is decomposed into a summation of three 3-way tensors so that each

part is sparse along a particular direction.

GEE method. But their model only applies to datasets with one spatial dimension. Our goal30

is to develop a new penalized QIF method in tensor setting to model the temporal prediction.

Nowadays, tensor regressions have shown to be powerful in learning complex feature structures

from multidimensional data. Many tensor techniques have been developed and applied to a broad

range of applications [11, 28]. However when focusing on feature selections (e.g., sparse tensor

decomposition), most of existing methods either assume i.i.d. samples, or assume correlated35

samples but do not model temporal additive effects.

We propose a new learning formulation that constructs tensor-based predictive model as a

function of covariates, not only from the current observation but also from multiple previous

consecutive observations. Simultaneously the model determines the temporal contingency and

the most influential features along each dimension of the tensor data. Given a data sample40

is characterized by a tensor, the coefficients in our additive model also form a K-way tensor.

To select features, we decompose the K-way coefficient tensor into a summation of K sparse

K-way tensors as shown in Figure 1. These tensors each present sparsity along one direction

and impose different block-wise least absolute shrinkage and selection operators (LASSO) to the

components. We use linearized block coordinate descent algorithm via a proximal map [3, 27]45

to efficiently solve the optimization problem. This approach then leads to K sub-problems that

share the same structure. We validate the effectiveness of the proposed method in simulations

and in the analysis of real-life fMRI and EEG datasets.

The rest of this paper is organized as follows. We first briefly review the GEE and QIFs

methods, and then introduce our proposed formulation: TensorQIF in the Method section, fol-50
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lowed by an Asymptotic Analysis section. An optimization algorithm for solving the formulation

is depicted in the Algorithm section where we also prove convergence and the recovery of feature

support. Experimental results are included and discussed in the Empirical Evaluation section,

followed by a Conclusion section.

2. Method55

2.1. Notations

We represent a K-way tensor as A ∈ Rd1×d2×...dK which contains N =
∏K
k=1 dk elements.

The inner product of two tensors A and B is given by 〈A,B〉 = vect(A)>vect(B). Here vect(·)

denotes the column-major vectorization of a tensor. The Frobenius norm of a tensor A is defined

by ~A~F =
√
〈A,A〉. The j-th sub-tensor of a tensor A along the mode-k can be obtained by60

fixing the k-th index as j, i.e. A(j)
(k) = A(i1, i2, ..., ik ≡ j, ik+1, ...iK). Note that A(j)

(k) is a (K−1)-

way tensor. The mode-k fiber of A is a dk dimensional vector which is obtained by fixing all

index of A except the k-th one. The mode-k unfolding of A is a matrix A(k) ∈ Rdk×N/dk formed

by concatenating all the N/dk mode-k fibers along its columns. The operator [A1,A2, ...,Am]

creates a (K + 1)-way tensor by concatenating m numbers of K-way tensors A1,A2, ...,Am of65

the same dimension.

2.2. Generalized Linear Models of a Tensor

Because our model is concerned with tensor regression and classification, we first introduce

a basic tensor formulation in which the objective function is written down into two parts: a loss

function l and a regularizer. Let (Xi, yi)1≤i≤m be a data set, where Xi ∈ Rd1×d2×...×dK is a

covariate tensor and yi ∈ R (resp. {±1}) for regression (resp. classification) is the corresponding

outcome. We consider a linear model below:

min
W

m∑
i=1

l(yi, 〈Xi,W〉) + λ~W~(·), (1)

where λ ≥ 0 is the regularization parameter, and ~ · ~(·) is a certain tensor norm. Elements in

the tensor W are the model coefficients to be fitted. In the study of low-rank tensor decom-

positions, overlapped/latent tensor trace norm [25] or Schatten norm [23] are widely applied in70
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(1). Although these latent tensor norms facilitate the search for a low-rank tensor solution, they

cannot enforce sparsity and thus unable to select the most relevant ones among features.

In this paper, we focus on sparsity and feature selection by imposing a regularization condition

that forces to zero out an entire slice of the coefficient tensor. In other words, our model selects

nonzero slices in each direction of the tensor W. We hence introduce the latent LF,1 norm

defined by

~W~l-LF,1
:= inf∑K

k=1Wk=W

K∑
k=1

λk dk∑
j=1

~(Wk)
(j)
(k)~F

 (2)

where λks’ are nonnegative constants. One can easily verify that Eq.(2) satisfies all required

norm properties.

There are various of settings for the loss function l depending on the specific learning tasks.

When the dataset is assumed to be i.i.d, the squared loss

l(yi, 〈Xi,W〉) = (yi − 〈Xi,W〉)2;

for regression or the logistic loss

l(yi, 〈Xi,W〉) = log(1 + exp(−yi〈Xi,W〉)).

for classification are two simple models usually applied. A more general family - generalized75

linear model (GLM) - has been used according to an exponential distribution assumption on

the dependent variable. This family includes both the squared loss and logistic loss. To deal

with correlated samples, GLM has been further extended from point estimation to variance

estimation, which leads to more complicated formula, such as GEE or QIF. Between these two,

QIF is more effective as discussed early on. In this paper, we will use the QIF setting to analyze80

additive effects in longitudinal datasets. The complete formula of l in our model will be given

in the next section.

2.3. The Proposed QIF Formulation

Let X (i)
t ∈ Rd1×d2×...×dK−1 be a (K − 1)-way tensor which represents the covariate tensor

measured for the subject i at time t. We denote y
(i)
t the outcome of the subject i at time t. We

assume that y
(i)
t depends not only on the current record X (i)

t but also on the previous τ records:
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X (i)
t−1,X

(i)
t−2, ...,X

(i)
t−τ . Hence we may view a sample at a particular time t as a pair (X(i;t), y

(i)
t ),

where X(i;t) is a K-way tensor concatenating all considered records:

X(i;t) := [X (i)
t ,X (i)

t−1,X
(i)
t−2, ...,X

(i)
t−τ ].

Suppose there are T total times of measurement for each subject i. In order to have enough

previouse observations, the index t of X(i;t) should start from τ + 1 and there are n := T − τ

training examples for each subject. In the graphical Granger model, the relation between X(i;t)

and y
(i)
t is given by

y
(i)
t = 〈X(i;t),W〉 (3)

for some tensor coefficient W ∈ Rd1×d2×...×dK−1×dK , where dK = τ . We denote N :=
∏K
k=1 dk

the number of elements in W. However, training examples in (3) are assumed to be i.i.d., which85

does not fit the intrinsic property of our dataset. In our case, the consecutive examples share

overlapping records (e.g. X(i;t) and X(i;t+1) share τ − 1 records: X (i)
t ,X (i)

t−1, ...,X
(i)
t−τ+1) and

outcomes y
(i)
t , y

(i−1)
t are correlated. Hence in this paper, we adapt QIF model which together

with GEE are members of GLM.

There are two essential ingredients in GLM: a link function and a variance function. The link

function describes the relation between a linear predictor η and the mean (expectation) of an

outcome y. The variance function tells how the variance of an outcome y depends on its mean.

In our formulation, these can be expressed by

µ
(i)
t := E[y

(i)
t ] = h−1(η

(i)
t ), var(y

(i)
t ) = V (µ

(i)
t ), (4)

where h is a link function determined according to a presumed distribution on yt from the

exponential family, V is a variance function, and

η
(i)
t = 〈X(i;t),W〉 (5)

is the linear predictor. Let y(i) := (y
(i)
τ+1, ..., y

(i)
τ+n)T be an n-dimensional column vector. In GEE

models, the covariance matrix Σ(i) for y(i) is modeled by

Σ(i) :=
(
A(i)

)1/2

R(α)
(
A(i)

)1/2

. (6)
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Here R(α) is the ‘working’ correlation matrix, and A(i) is an n×n diagonal matrix with V (µ
(i)
τ+j)

as the j-th diagonal element. The matrix Σ(i) will be equal to cov(y(i)) if R(α) is the true

correlation structure for y(i) [13]. The model coefficients are then obtained by solving the score

equation from the quasi-likelihood analysis. In our setting, it turns out to be

m∑
i=1

(
D(i)

)T (
A(i)

)−1/2

R−1(α)
(
A(i)

)−1/2

s(i) = 0. (7)

Here s(i) = y(i) − µ(i)), and µ(i) = (µ
(i)
τ+1, ..., µ

(i)
τ+n)> which depends on W (see (4) and (5)).90

The n × N matrix D(i) is given by D(i) = ∂µ(i)/∂w where w = vect(W) and
(
D(i)

)
ab

=

∂(µ(i))a/∂(w)b.

In a more advanced QIF method, the working correlation no longer needs to be pre-specified

as in GEE, which can be very inaccurate. Rather, it directly models R−1(α) as

R−1(α) =

d∑
j=1

ajMj (8)

where Mj ’s are known n × n matrices characterizing various basic correlation structures and

aj ’s are unknown parameters. For example, an AR-1 correlation can be expressed as R−1(α) =

a1M1 + a2M2 + a3M3, where M1 is an identity matrix, M2 satisfies (M2)i,j = 1 if |i− j| = 1,

(M2)i,j = 0 if |i − j| 6= 1, and M3 has 1 at (i, j) = (1, 1), (n, n) and zeros at other positions.

Instead of solving aj ’s associated with (7), we formulate our optimization problem via the so-

called ‘extended score’ by substituting (8) for R−1(α) in (7):

gm(W) :=
1

m

m∑
i=1

g(i)(W) (9)

:=
1

m

m∑
i=1


(
D(i)

)> (
A(i)

)−1/2
M1

(
A(i)

)−1/2
s(i)

...(
D(i)

)> (
A(i)

)−1/2
Md

(
A(i)

)−1/2
s(i)


We may view each g(i)(W) as a random vector g(X , s,W) evaluated at the data {s(i),X(i) =

(X(i;τ+1), ...,X(i;τ+n))}.

The vector gm(W) in (9) is an (N · d)-dimensional column vector. In fact, substituting (8)

into (7) yields a linear combination of the row blocks of gm(W). Since gm(W) has a larger
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dimension than W, we cannot estimate W by simply solving gm(W) = 0. Adapting the idea of

[17] and [19], we obtain W by minimizing the weighted length of gm(W):

min
W

Qm(W) := mgm(W)>C−1
m (W)gm(W), (10)

where

Cm(W) =
1

m

m∑
i=1

g(i)(W)g(i)(W)> (11)

which estimates the covariance matrix of gm. The use of Cm leads to an efficient model [10]95

because the calculation of Cm, a direct estimate of the covariance, allows us to omit the step of

estimating aj ’s.

In our tensorQIF model, the loss function l(W) = Qm(W) and the regularization term is

given by (2). More precisely, we solve the following optimization problem:

min
W1,W2,...,WK

Qm(W) +

K∑
k=1

λk dk∑
j=1

~(Wk)
(j)
(k)~F

 (12)

where each Wk ∈ Rd1×d2×...×dK and the final coefficient tensor

W =

K∑
k=1

Wk. (13)

3. Asymptotic Analysis

In this section we establish the asymptotic normality for our TensorQIF model as m ap-

proaches to infinity. We first rescale the objective function in (12):

Q̃m(W) +

K∑
k=1

λk
m

dk∑
j=1

~(Wk)
(j)
(k)~F

 . (14)

where Q̃m = g>mC−1
m gm. We require the following regularity conditions on the random vector g

given after (9):100

1. There exists a unique W∗ that satisfies the mean zero model assumption, i.e.

E[g(W∗)] = 0.
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2. The data {X(i), s
(i)}′s are i.i.d. and the parameter space Ω := Ω1×Ω2×...×ΩK is compact.

3. W∗ has a unique decomposition W∗ =
∑K
k=1W∗k such that for each k, W∗k is an interior

point of Ωk.

4. Let w = vect(W). For all W ∈ Ω, ‖g(W)g(W)>‖F ≤ d1(X , s), ~∇wg(W)~F ≤ d2(X , s)

for some d1, d2 such that E[d1(X , s)] and E[d2(X , s)] are finite.105

Under these regularity conditions, we have

Theorem 1. Let λk’s be fixed constants and let
∑K
k=1 Ŵk;m := Ŵm be the estimator obtained

by minimizing (14) subject to (13). Then as m→∞, we have

Ŵm →W∗ in probability, (15)

√
m · vect

(
Ŵm −W∗

)
→ N (0, (J>0 C−1

0 J0)−1) in distribution. (16)

where C0 = C∗(W∗) and J0 = J∗(W∗).

The proof is given in Appendix.

4. Algorithm

In this section, we provide an algorithm to solve the optimization problem (12) followed110

by a convergence result. Since the sample size m is fixed throughout this section, we drop the

subscript m in (12) and write Qm as Q. We first give notations that will be used in our algorithm.

• Φ = (W1, . . . ,WK); W(Φ) =
∑K
k=1Wk.

• F (Φ) = Q(W(Φ)) +R(Φ).

• Φ(r) = (W(r)
1 , . . . ,W(r)

K ); W(r) =W(Φ(r)).115

9



4.1. Optimization Algorithm

We develop a linearized block coordinate descent algorithm in the following iterative proce-

dure to find optimal Φ̂ in (12). Denote the iterates at the r-th iteration by Φ(r). At the point

Φ = (W1, · · · ,WK), let

R(Φ) :=

K∑
k=1

λk dk∑
j=1

~(Wk)
(j)
(k)~F

 . (17)

Assume ∇WQ(W) is Lipschitz continuous with Lipschitz modulus LQ. The following PL(Φ, Φ̃)

is a linearized proximal map for the non-smooth regularizer R:

PL(Φ, Φ̃) := Q(W̃) +R(Φ) +
KL

2

K∑
k=1

~Wk − W̃k~2
F + 〈

K∑
k=1

(
Wk − W̃k

)
,∇WQ(W̃)〉 (18)

where L ≥ LQ is a fixed constant. Note that

L

2
~W − W̃~2

F ≤
KL

2

K∑
k=1

~Wk − W̃k~2
F . (19)

The inequality (19) and the Lipschitz continuity of Q(W) indicate that for all L ≥ LQ,

F (Φ) ≤ PL(Φ, Φ̃) for all Φ and Φ̃. (20)

At the r-th iteration, we update Φ(r+1) by solving the following optimization problem

min
Φ

K∑
k=1

[
〈∇WQ(r),Wk −W(r)

k 〉+
KL

2
~Wk −W(r)

k ~2
F

]
+R(Φ) (21)

where ∇WQ(r) = ∇WQ(W(r)). Since R(Φ) given in (17) is separable among Wk’s, we can

decompose the problem (21) into the following K separate subproblems:

min
Wk

〈∇WQ(r),Wk −W(r)
k 〉+

KL

2
~Wk −W(r)

k ~2
F + λk

dk∑
j=1

~(Wk)
(j)
(k)~F

 (22)

for k ∈ {1, . . . ,K}. Since the subproblems share the same structure, we may fix k and solve (22)

to find the best Wk, which is equivalent to

min
Wk

1

2

�

�

�

�

Wk −
(
W(r)
k −

1

KL
∇WQ(r)

)�

�

�

�

2

F

+
λk
KL

dk∑
j=1

~(Wk)
(j)
(k)~F . (23)
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Algorithm 1 Search for optimal Φ̂

Input: X , y, L, λk

Output: Φ̂ = (Ŵ1, · · · , ŴK)

1. r = 0: compute L̃ and initialize W(0)
k for 1 ≤ k ≤ K.

2. Obtain Φ(r+1) = (W(r+1)
1 , · · · ,W(r+1)

K ) by solving (23) for each fixed 1 ≤ k ≤ K.

3. r = r + 1.

Repeat 2 and 3 until convergence.

The problem (23) has a closed-form solution W(r+1)
k where each of its sub-tensor is

(W(r+1)
k )

(j)
(k) = max

0, 1− λk

KL~(P(r))
(j)
(k)~F

 (P(r))
(j)
(k), (24)

and P(r) :=W(r)
k −

1
KL∇WQ

(r). In fact, from optimality conditions, W(r+1)
k satisfies

∇WQ(r) +KL
(
W(r+1)
k −W(r)

k

)
+ λkAk(W(r)

k ) = 0 (25)

for all r ≥ 1 and 1 ≤ k ≤ K. Here Ak(W) is a subgradient of
dk∑
j=1

~(W)
(j)
(k)~F . The calculation of

the Lipschitz modulus LQ can be computationally expensive. We therefore follow a similar argu-

ment in [26] to find a proper approximation L̃ ≥ LQ and use L̃ as L in all of our computations.

Algorithm 1 summarizes the steps for finding the optimal Ŵk.120

4.2. Convergence Analysis

In this section, we prove that the sequence {Φ(r)}r≥0 generated by Algorithm 1 will converge

to a global optimal solution Φ̂ with a convergence rate of O(1/r) if the initial point Φ(0) is

located in a convex neighborhood of Φ̂. In [14], it has been shown that the function Q(W) is

not globally convex in general. Hence the standard convergence arguments such as in [3] cannot125

be applied directly. Furthermore, with the latent approach W =
∑K
k=1Wk, we have to carefully

split or combine inequalities at certain points. All of these make the proof of the convergence

nontrivial.

Let Φ̂ = (Ŵ1, . . . , ŴK) be a global minimizer of F (Φ) and Ω = Ω1× . . .ΩK is a neighborhood

of Φ̂ such that Π(Ω) := {W(Φ) : Φ ∈ Ω} is convex and Q(W) is convex in Π(Φ). Assume Φ(0)
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satisfies

D(Φ(0)) :=

K∑
k=1

~W(0)
k − Ŵk~2

F <
1

K

[
dist(∂Π(Ω), Ŵ)

]2
. (26)

Then we have the following convergence result.

Theorem 2. Let Φ(n) be the tuple of tensors generated by Algorithm 1 at the n-th iteration.

Then for any n ≥ 1,

F (Φ(n))− F (Φ̂) ≤
KL

∑K
k=1 ~W(0)

k − Ŵk~2
F

2n
. (27)

To prove the theorem, we first show that if Φ(r) satisfies (26) at the r-th iteration, then Φ(r+1)
130

also satisfies (26). This ensures that the entire sequence {W(Φ(n))}n≥0 generated by Algorithm

1 lies in Π(Ω) in which the function Q is convex. Thus the convex inequality is always valid and

Theorem 2 is established. Details are provided in Appendix.

4.3. Group Support: Values of λk’s and L

In this section we focus on the linear model in which each component of η(i) is given by

η
(i)
t = 〈X(i;t),

K∑
k=1

Wk〉

and the components of outcome y(i) are of the form

y
(i)
t = 〈X (i)

t ,W∗〉+ s
(i)
t

for some true tensor coefficient W∗ =
∑K
k=1W∗k , where τ ≤ t ≤ T , and W∗ks follow certain

true patterns. Let D := ∇WQ(W∗). Motivated by the algorithm, we consider the following

optimization problem for a fixed k:

min
Wk

1

2
~Wk −W∗k +D~

2
F +

λk
KL

dk∑
j=1

~(Wk)
(j)
(k)~F . (28)

Our goal is to estimate the group support for W∗k , i.e. obtain the subset S∗k ⊂ {1, 2, ..., dk}135

such that (W∗k )
(j)
(k) 6= 0 if and only if j ∈ S∗k . The Karush–Kuhn–Tucker (KKT) conditions for

solutions of (28) immediately imply the following lemma.
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Lemma 1 (KKT). Assume Ŵk is a solution of (28). Then either

(Ŵk)
(j)
(k) 6= 0 and

(Ŵk)
(j)
(k) − (W∗k )

(j)
(k) +D(j)

(k) = − λk
KL

(Ŵk)
(j)
(k)

~(Ŵk)
(j)
(k)~F

,

or

(Ŵk)
(j)
(k) = 0 and

~(W∗k )
(j)
(k) +D(j)

(k)~F ≤
λk
KL

.

Lemma 1 then yield

Theorem 3. Assume
λk
2
≥ max

1≤j≤dk
~D(j)

(k)~F . (29)

Then (28) has a solution Ŵk such that

{j : (Ŵk)
(j)
(k) 6= 0} := Ŝk ⊂ Sk. (30)

Furthermore, Ŝk = S∗k if λk <
KL
2 minj∈S ~(W∗k )

(j)
(k)~F .

The proof is given in Appendix.140

5. Empirical Evaluation

In this section we present the results of both synthetic and real-life fMRI examples. We test

the efficiency and effectiveness of the proposed method TensorQIF comparing to the state-of-

the-art methods. The datasets containing continuous responses have a format as described in

Section 2.3: {y(i)
t ,X (i)

t : 1 ≤ i ≤ m, 0 ≤ t ≤ T}. Here i denotes the subject id and t is a time145

point. For both synthetic and fMRI cases, each X (i)
t is a matrix (i.e. a 2-way tensor).
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5.1. Simulation

We examine the following methods: TensorQIF, Least Absolute Shrinkage and Selection

Operator (LASSO), Graphical Granger Modeling ([15]), GEE ([13]), and Kruskal ([28]). The

LASSO uses only the current record, the matrix X (i)
t , as the covariate to make a prediction150

on y
(i)
t , whereas the Granger and our TensorQIF have a tensor covariate. That is, they use

X(i;t) described in Section 2.3 as the input, which is a 3-way tensor formed by concatenating

the current and several previous X(i;t)s. In fact, the Granger model is equivalent to the LASSO

with a tensor input. To show the importance of considering lagged effect and conduct a fair

comparison between methods, we will demonstrate the results on both matrix and tensor inputs155

for GEE and Kruskal models.

We consider the settings (d1, d2, τ + 1) = (2, 2, 3), (3, 3, 3), and (5, 5, 5) i.e. X (i)
t ∈ R2×2,

R3×3, and R5×5. The tensor input X(i;t) ∈ R2×2×3, R3×3×3, and R5×5×5. Entries of X (i)
t are

generated from the normal distribution N(0, 1) plus the uniform distribution U(0, sin(t)). The

number of time point is 10 and after concatenating the current and previous τ = 2 records, we

obtain X(i;t) for τ + 1 ≤ t ≤ 10. We assign the true latent tensor coefficients W1, W2, and W3 a

non-zero pattern in the first feature along the directions 1, 2, and 3 respectively. The non-zero

entries in Wks follow the distribution ckN(0, 1). Here we assign Wks different scales: c1 = 0.1,

c2 = 1.0 and c3 = 0.01. Finally, we setW =W1 +W2 +W3. And for each subject i, the outcome

(observed) y
(i)
t is calculated by

y
(i)
t = 〈X(i;t),W〉+ s

(i)
t ,

where the residual s(i) ∈ R8 is generated from the multivariate normal distribution of mean 0

and AR(1) correlation structure with σ2 = 4.0 and α = 0.8.

We generate 100 synthetic datasets each contains 1000 subjects and a test set containing

10000 subjects. Only the true coefficients W1, W2, and W3 are fixed across all datasets. In160

each fitting procedure, 80% of subjects form a training set and 20% are used for the validation

that helps selecting hyper parameters in models. We examine the model performances in two

error metrics on the test set: 1. The mean square error (MSE) between the observed y and the

predictive ŷ = 〈X , Ŵ〉; 2. The root mean square error (RMSE) between true ȳ = 〈X ,W〉 and ŷ.

Since the Kruskal model focuses on the low rank decomposition for W, we conduct the sim-165
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ulation by setting rank= 2 (rk2) and rank= 3 (rk3). Furthermore, to compare the results under

miss specified correlation structures, we consider both AR(1) and independent (Id) correlation

settings in GEE and TensorQIF. The average of predictive MSE/true y RMSE on the test set

over 100 replications with different models and settings are summarized in Table 5.1.

In Table 5.1, the proposed TensorQIF outperforms the other regression methods in terms170

of the average predicting accuracy (MSE) and the coefficient estimation (RMSE). Since the

synthetic datasets are generated by using τ ≥ 2, i.e. the outcome depends on the current

and previous τ records, we see that the models using matrix inputs (only current record) suffer

larger errors. Granger and Kruskal models does not handle the within sample correlation, so they

result higher mean MSE/RMSE even with tensor inputs. To further examine the importance175

of modeling correlation, we conduct the paired T-test on the 100 predictive MSE generated by

each model fitting. We consider TensorQIF (AR1) v.s. Granger and TensorQIF (AR1) v.s.

TensorQIF (Id). The p values are given in Table 2.

The simulation also confirms that with the correct correlation structure (AR1), the fitting

results of GEE (tensor input) and TensorQIF are more accurate. When both models are under180

miss specified correlation structure (Id), Table 5.1 shows that the proposed TensorQIF gives

a lower average predictive MSE and more accurate coefficient estimations. We also conduct

the paired T-test on the predictive MSE for model pairs in GEE (AR1), GEE (Id), TensorQIF

(AR1), and TensorQIF (Id). The p values are given in Table 3. We see that for the larger

coefficient size, the MSE differences between these settings are more significant.185

Figure 2 shows an example of TensorQIF (AR1) fitting result on one dataset with (d1, d2, τ +

1) = (3, 3, 3), and λ1 = λ2 = λ3 = 350. The white spaces represent zero coefficients; red and

blue colors represent positive and negative values respectively. We see that the proposed model

captures the preassigned patterns in each of the three directions and recovers the true coefficient

W.190

5.2. fMRI Data

Functional magnetic resonance imaging (fMRI) is a functional neuroimaging procedure using

MRI technology that measures brain activity by detecting associated changes in blood flow.

The fMRI data used in the experiment were collected by the Alzheimer’s Disease Neuroimaging
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Table 1: Simulation results from 100 replicates for dimensions d1 × d2 × τ + 1. The true correlation structure is

AR(1). Reported are the average of MSE/RMSE.

Average MSE between observed y and the predictive ŷ

LASSO Granger Kruskal (rk2) Kruskal (rk3)

matrix tensor matrix tensor matrix tensor

2× 2× 3 8.1197 3.8862 8.1188 3.8916 8.1188 3.8853

3× 3× 3 9.9936 3.9744 10.025 5.3318 9.9930 4.3665

5× 5× 5 27.559 4.0476 27.647 5.1437 27.595 4.3695

GEE (AR1) GEE (Id) TensorQIF (AR1) TensorQIF (Id)

matrix tensor matrix tensor tensor tensor

2× 2× 3 8.1656 3.8802 8.1188 3.8853 3.8707 3.8842

3× 3× 3 10.113 3.9726 9.9930 3.9825 3.9698 3.9788

5× 5× 5 27.580 4.0326 27.578 4.0781 4.0118 4.0347

Average RMSE between true ȳ and the predictive ŷ with tensor inputs

Granger Kruskal (rk2) Kruskal (rk3)

2× 2× 3 0.0898 0.1158 0.0886

3× 3× 3 0.1253 1.2310 0.6107

5× 5× 5 0.2534 1.0764 0.6129

GEE (AR1) GEE (Id) TensorQIF (AR1) TensorQIF (Id)

2× 2× 3 0.0582 0.0882 0.0544 0.0849

3× 3× 3 0.0808 0.1282 0.0773 0.1193

5× 5× 5 0.2144 0.3006 0.1958 0.2379
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Table 2: P values of paired t-test with TenaorQIF (AR1): considering correlation or not.

Granger GEE (Id) TensorQIF (Id)

2× 2× 3 4.08E-14 8.47E-13 8.04E-13

3× 3× 3 4.15E-14 5.16E-23 2.83E-18

5× 5× 5 1.71E-30 1.39E-48 1.67E-14

Table 3: P values of paired t-test between TensorQIF and GEE when both use correct correlation structure (AR1)

and both use incorrect one (Id).

TenaorQIF (AR1) v.s. GEE (AR1) TensorQIF (Id) v.s. GEE (Id)

2× 2× 3 3.31E-08 1.07E-02

3× 3× 3 2.72E-09 1.04E-09

5× 5× 5 6.27E-23 2.00E-40

Initiative (ADNI)1. We cleaned up the fMRI data by filtering out the incomplete or low quality195

observations. After data cleaning, the data includes 147 subjects diagnosed with mild cognitive

impairment (MCI) from the year of 2009 to 2016. We use the participants’ first fMRI scan as

baseline and the other fMRI scans in 6th, 12th, 18th, and 24th months of the study. Here are 67

brain areas and 4 properties (CV,SA,TA,TS) of the brain cortex2 in our model. These properties

are CV: Cortical Volume; SA: Surface Area; TA: Thickness Average; TS: Thickness Standard200

Deviation. This record naturally form a 3-way tensor with one dimension for brain areas, one

for property, and one along the temporal line. Our TensorQIF keeps such tensor form without

squashing dataset into a vector which may cause losing the proximity. The outcome used in

this experiment is the mini-mental state examination (MMSE) score quantified by a 30-point

questionnaire, which is used extensively in clinical and research settings to measure cognitive205

impairment. At each time point, the MMSE score would be evaluated from participants’ answers

of the questionnaire.

We use 20% of subjects for testing. The lag variable is set to τ = 2. The λ1, λ2, and λ3 were

1http://adni.loni.usc.edu/
2http://adni.bitbucket.io/reference/ucsffresfr.html
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Figure 2: True coefficients and a TensorQIF fitting result.

tuned in a two-fold cross validation. In other words, the training records were further split into

half: one used to build a model with a chosen parameter value from a range of 1 to 20 with a210

step size of 0.1; and the other used to test the resultant model. We chose the parameter values

that gave the best two-fold cross validation performance.

Our approach is able to select patterns along three dimensions: among the features, among

the brain areas, and among the different lagged months. The λ’s were chosen as λ1 = 6, λ2 = 20,

and λ3 = 24. In Figure 3, the structural damage of AD starting 6 months ago plays a major role215

in the development of the AD. Larger means and standard derivations of the thickness imply a

higher risk of the AD. The proposed model selects 14 out of 68 brain areas that affect the MMSE

score. According to the selections of the brain areas, the data at Cuneus area and Transverse

Temporal area in both sides, and the data at right Inferior Parietal area, and so on might be

important to predict the cognitive impairment.220

5.3. EEG Data

Human memory function can be assayed in real-time by electroencephalographic (EEG)

recording. However, the clinical utility of this method depends on the reliable determination

of functionally and diagnostically relevant features. The proposed method approaches capable
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Figure 3: Columns, rows, and slices selected by the model for predicting MMSE score from participants’ fMRI

information.

of modeling non-stationary signal have been explored as a way to synthesize large arrays of225

EEG data because the EEG record could be more precisely characterized by a 3-way tensor

representing processing stages, spatial locations, and frequency bands as individual dimensions.

Schizophrenia (SZ, n = 40) patients and healthy control (HC, n = 20) participants com-

pleted an EEG Sternberg task. EEG was analyzed to extract 5 frequency components (delta,

theta, alpha, beta, gamma) at 4 processing stages (baseline, encoding, retention, retrieval) and230

12 scalp sites representing central midline, and bi-lateral frontal and temporal regions. The pro-

posed and comparing methods were applied to the resulting 240 features (forming a 5× 4× 12

tensor) to classify correct (-1) vs. incorrect (+1) responses on a trial-by-trial basis. In this

approach, the proposed method guided the respective selection of spectral frequency, temporal

(processing stages), and spatial (electrode sites) dimensions most related to trial performance.235

The correlations among processing stages were also estimated by the proposed method. Sepa-

rate models were constructed for SZ and HC samples for comparison of common and disparate

feature patterns across the dimensions.

For each of the SZ and HC datasets, 1/5 of the records were randomly chosen from every

subject to form the test data and the rest of the records were used in training. The hyperpa-240
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rameters λ1, λ2, and λ3 were tuned in a two-fold cross validation within the training data. We

chose the parameter values that gave the best two-fold cross validation performance, which were

λ1 = 7.5, λ2 = 5.5, λ3 = 7.4 for SZ and λ1 = 3.3, λ2 = 2.1, λ3 = 3.1 for HC.

As shown in Figure 4, in both groups, task performance is most dependent on encoding

and retrieval stage activity, with higher encoding uniformly and lower retrieval activity gener-245

ally associated with better task performance across electrode sites. This pattern appears most

prominently in central alpha activity (Figure 4; blue border). This indicates the same findings

as in [26]. Groups differed in two main ways: (1) centroparietal theta, beta, and gamma dur-

ing encoding and retention have lower values in HC (Figure 4; red border), and (2) the delta

activity across stages and electrodes (Figure 4; green border) was selected in SZ but no in HC.250

Here the experimental results give much clearer details of the working electrode sites and spec-

tral frequencies comparing to the results in [12]. The proposed method outperform GEE and

SVM solutions according to AUC values (HC: 55.5%; SZ: 58.8% versus the best AUC 53% from

the other methods). This is because the proposed method enabled interpretation and summary

across all dimensions, which is not possible for classifiers based on single vectors.255

6. Conclusion

We have proposed a new learning formulation called TensorQIF to analyze longitudinal

data. It takes data matrices or tensors as inputs and make predictions. The proposed method

can simultaneously determine the temporal contingency and the influential features from the

observations of different modes without breaking into multiple models. The tensor coefficient is260

computed by the summation of K component tensors so that each reflects the selection among

a particular mode. Asymptotic analysis shows the proposed formulation finds true coefficient

when the sample size approaches to infinity. Moreover, the related optimization problem can

be efficiently solved by a linearized block coordinate descent algorithm which has a sublinear

convergence rate. The simulation results demonstrate the superior performance of the proposed265

method. And applications on real-life dataset provide insightful discoveries.
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Figure 4: Columns, rows, and slices selected by the model to predict the succeeds of the memory tasks for SZ

(top) and HN (bottom), respectively.

7. Appendix

7.1. Proof of Theorem 1

The proof the theorem is based on a uniform convergence result for stochastic functions.

Using Lemma 2.4 in [16], conditions 2, and 4, we obtain270

Lemma 2. Let C∗(W) = E[g(W)g(W)>] and J∗(W) = E[∇Wg(W)]. Then we have

Cm(W)→ C∗(W) in probability (31)

and

∇wgm(W)→ J∗(W) in probability, (32)

uniformly for W ∈ Ω. Moreover, C∗(W) and J∗(W) are uniformly continuous.
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Remark 1. By condition 1 and the weak law of large numbers, we have gm(W∗) p→ 0 as m→∞.

The uniform convergence of the gradient in (32) then yield

gm(W)→ E[g(W)] in probability (33)

uniformly for W ∈ Ω and E[g(W)] is continuous.

Proof of the Theorem. Since Ŵm is a minimizer, we have

Q̃m(Ŵm) +

K∑
k=1

λk
m

dk∑
j=1

~(Ŵk;m)
(j)
(k)~F

 ≤ Q̃m(W∗) +

K∑
k=1

λk
m

dk∑
j=1

~(W∗k )
(j)
(k)~F

 . (34)

Note that

|Q̃m(W∗)| =
∣∣g>m(W∗)C−1

m (W∗)gm(W∗)
∣∣ (35)

≤
∣∣g>m(W∗)[C−1

m (W∗)−C−1
∗ (W∗)]gm(W∗)

∣∣+
∣∣g>m(W∗)C−1

∗ (W∗)gm(W∗)
∣∣ .

By (31), condition 1, and the weak law of large numbers, we deduce∣∣∣Q̃m(W∗)
∣∣∣→ 0 in probability. (36)

Therefore from (34), we obtain ∣∣∣Q̃m(Ŵm)
∣∣∣→ 0 in probability (37)

for fixed λk’s. Using (31) and (33) we also have

|Q̃m(Ŵm)− E[g(Ŵm)]>C∗(Ŵm)E[g(Ŵm)]| → 0 in probability. (38)

Thus E[g(Ŵm)]→ 0 and (15) is followed by the uniqueness in condition 1 and the continuity of

E[g(W)] in Remark 1.

For m is large enough, we may assume the minimizer Ŵm is an interior point which satisfies

the Euler-Lagrange equation:

∇wQ̃m(Ŵm) + o(1) = 0. (39)

Using the mean value theorem we obtain

∇wQ̃m(W∗) +∇2
wQ̃m(W̃m)vect(Ŵm −W∗) = o(1) (40)
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for some W̃m between Ŵm and W∗. Then we have

√
m · vect(Ŵm −W∗) = −

√
m[∇2

wQ̃m(W̃m)]−1[∇wQ̃m(W∗) + o(1)]. (41)

A direct calculation shows

∇wQ̃m = 2[∇wgm]>C−1
m gm + g>m[∇wC−1

m ]gm, (42)

and

∇2
wQ̃m = 2[∇wgm]>C−1

m ∇wgm + Rm. (43)

Here ∇wC−1
m = [∂C−1

m /∂(w)1, ..., ∂C−1
m /∂(w)N ] is a three dimensional array. And the second

term of (42) is anN -dimensional column vector whose j-th component is given by g>m[∂C−1
m /∂(w)j ]gm.

The formula of the N ×N matrix Rm is

Rm = 2∇w[∇wgm]>C−1
m gm + 4[∇wgm]>[∇wC−1

m ]gm + g>m[∇2
wC−1

m ]gm. (44)

By the Central Limit Theorem,

√
mgm(W∗) d→ N (0,C0) in distribution. (45)

In particular, we have gm(W∗) = Op(m
−1/2). Hence g>m[∇wC−1

m ]gm|W=W∗ → op(1) and

Rm(W̃m)→ op(1). Applying Lemma 2 and (15) we deduce

[∇2
wQ̃m(Wr)]

−1 → 1

2
(J>0 C−1

0 J0)−1 in probability, (46)

and

∇wQ̃m(W∗)→ 2J>0 C−1
0 gm(W∗) in probability. (47)

Combining (41) and (45)-(47) yields (16).275

7.2. Proof of Theorem 2

We first present a lemma which provides a key inequality in our proof.

Lemma 3. Assume Φ(r) = (W(r)
1 , · · · ,W(r)

K ) such thatW(Φ(r)) ∈ Π(Ω). Let Φ(r+1) = (W(r+1)
1 , . . . ,W(r+1)

K )

be a minimizer of (23). Then for any L ≥ LQ and for any Φ = (W1, . . .WK) such that

W(Φ) ∈ Π(Ω), we have

F (Φ)− F (Φ(r+1)) ≥ KL

2

K∑
k=1

~W(r+1)
k −W(r)

k ~2
F +KL

K∑
k=1

〈W(r)
k −Wk,W(r+1)

k −W(r)
k 〉. (48)
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Proof. Since Φ(r+1) is a minimizer, by (19), we have

F (Φ)− F (Φ(r+1)) ≥ F (Φ)− PL(Φ(r+1),Φ(r)). (49)

Using the convex property of Q(W) in Π(Ω) and the assumption W(Φ(r)) ∈ Π(Ω) we deduce

that for all Φ satisfying W(Φ) ∈ Π(Ω),

Q(W(Φ)) ≥ Q(W(r)) + 〈
K∑
k=1

(
Wk −W(r)

k

)
,∇WQ(r)〉. (50)

Furthermore, since each part of R is globally convex, we have in general,

dk∑
j=1

~(Wk)
(j)
(k)~F ≥

dk∑
j=1

~(W(r+1)
k )

(j)
(k)~F + 〈Wk −W(r+1)

k ,Ak(W(r)
k )〉. (51)

for all 1 ≤ k ≤ K. Combining (50) and (51) we obtain

F (Φ) ≥Q(W(r)) + 〈
K∑
k=1

(
Wk −W(r)

k

)
,∇WQ(r)〉+R(Φ(r+1))

+

K∑
k=1

〈Wk −W(r+1)
k , λkAk(W(r)

k )〉. (52)

From (52) and the definition of PL(Φ(r+1),Φ(r)) we have

F (Φ)− PL(Φ(r+1),Φ(r)) ≥− KL

2

K∑
k=1

~W(r+1)
k −W(r)

k ~F

+

K∑
k=1

〈Wk −W(r+1)
k ,∇WQ(r) + λkAk(W(r)

k )〉 (53)

By (25), the second term of (53) on the right hand side can be rewritten as

KL

K∑
k=1

〈W(r+1)
k −Wk,W(r+1)

k −W(r)
k 〉 (54)

Note that for each 1 ≤ k ≤ K,

−1

2
~W(r+1)

k −W(r)
k ~F + 〈W(r+1)

k −Wk,W(r+1)
k −W(r)

k 〉

=
1

2
~W(r+1)

k −W(r)
k ~F + 〈W(r)

k −Wk,W(r+1)
k −W(r)

k 〉. (55)

The lemma then follows by (49), (53), and (55).
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Lemma 4. Let Ŵ =W(Φ̂). Suppose Φ(r) satisfy

D(Φ) :=

K∑
k=1

~Wk − Ŵk~2
F <

1

K

[
dist(∂Π(Ω), Ŵ)

]2
. (56)

Then W(Φ(r+1)) generated by (23) also satisfies (56).

Proof. The condition (56) implies ~W(Φ(r)) − Ŵ~F < dist(∂Π(Ω), Ŵ), i.e. W(Φ(r)) ∈ Π(Ω).

Since Φ̂ ∈ Ω is a global minimizer, applying Lemm 3 with Φ = Φ̂ we deduce

0 ≥
K∑
k=1

~W(r+1)
k −W(r)

k ~2
F + 2

K∑
k=1

〈W(r)
k − Ŵk,W(r+1)

k −W(r)
k 〉. (57)

Using Pythagoras relation for each 1 ≤ k ≤ K we obtain

K∑
k=1

~W(r+1)
k − Ŵk~2

F =

K∑
k=1

~W(r)
k − Ŵk~2

F +

K∑
k=1

~W(r)
k −W

(r+1)
k ~2

F

+ 2

K∑
k=1

〈W(r)
k − Ŵk,W(r+1)

k −W(r)
k 〉

≤
K∑
k=1

~W(r)
k − Ŵk~2

F . (58)

Here the last inequality comes from (57). Thus W(Φ(r+1)) satisfies (56).280

Remark 2. Lemma 4 implies that all points in the sequence {Φ(r)}r≥0 generated by Algorithm

1 satisfy (56) if the initial point Φ(0) does. In particular, we have {W(Φ(r))}r≥0 ⊂ Π(Ω). Thus

we can apply Lemma 3 for all r ≥ 0.

Proof of the Theorem. From Remark 2, we apply Lemma 3 with Φ = Φ̂ for all 0 ≤ r ≤ n−1:

2

KL

[
F (Φ̂)− F (Φ(r+1))

]
≥

K∑
k=1

~W(r+1)
k −W(r)

k ~2
F + 2

K∑
k=1

〈W(r)
k − Ŵk,W(r+1)

k −W(r)
k 〉

=

K∑
k=1

~Ŵk −W(r+1)
k ~2

F −
K∑
k=1

~Ŵk −W(r)
k ~2

F . (59)

Summing (59) over r we have

2

KL

[
nF (Φ̂)−

n−1∑
r=0

F (Φ(r))

]
≥

K∑
k=1

~Ŵk −W(n)
k ~2

F −
K∑
k=1

~Ŵk −W(0)
k ~2

F . (60)
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Using Lemma 3 again with Φ = Φ(r) we have for all 0 ≤ r ≤ n− 1,

2r

KL

[
F (Φ(r))− F (Φ(r+1))

]
≥ r

K∑
k=1

~W(r+1)
k −W(r)

k ~2
F (61)

Summing (61) over r we obtain

2

KL

[
−nF (Φ(n)) +

n−1∑
r=0

F (Φ(r+1))

]
≥
n−1∑
r=0

r

K∑
k=1

~W(r+1)
k −W(r)

k ~2
F . (62)

Combining (60) and (62) yields (27).

Remark 3. Lemma 3 still holds if Φ(r) is replaced by any Φ̃(r) such that W(Φ̃(r)) ∈ Π(Ω).285

Furthermore, from the proof of Lemma 4, we deduce that the minimizer of (23) generated by

Φ̃(r) will satisfy (56) if Φ̃(r) does.

7.3. Proof of Theorem 3

For any tensor W and a set of indies S, we define (W)S(k) by

((W)S(k))
(j)
(k) =

 (W)
(j)
(k) if j ∈ S

0 otherwise.

Let Ŵk be a solution of the restricted version of (28):

Ŵk = arg min

1

2

�

�

�
(Wk)

S∗
k

(k) − (W∗k )
S∗
k

(k) +DS
∗
k

(k)

�

�

�

2

F
+

λk
KL

∑
j∈S

~(Wk)
(j)
(k)~F

 .

Then (Ŵk)
(j)
(k) = 0 for j ∈ S∗ck . From Lemma 1 and (29), Ŵk is a solution of (28) and (Ŵk)

(j)
(k)

satisfies

(Ŵk)
(j)
(k) − (W∗k )

(j)
(k) +D(j)

(k) = − λk
KL

(A)
(j)
(k)

for j ∈ S∗k . Here ~(A)
(j)
(k)~F ≤ 1 and

(A)
(j)
(k) =

(Wk)
(j)
(k)

~(Wk)
(j)
(k)~F

if (Wk)
(j)
(k) 6= 0.

By the triangle inequality we have

~(Ŵk)
(j)
(k)~F ≥ min

j∈S∗
k

~(W∗k )
(j)
(k)~F −max

j∈S∗
k

~(U)
(j)
(k)~F
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where

(U)
(j)
(k) = −D(j)

(k) −
λk
KL

(A)
(j)
(k).

Using (29) we deduce

max
j∈S∗

k

~(U)
(j)
(k)~F ≤ max

j∈S∗
k

~D(j)
(k)~F +

λk
KL
≤ 2λk
KL

.

Thus ~(Ŵk)
(j)
(k)~F > 0 if 2λk

KL < minj∈S∗
K

~(W∗k )
(j)
(k)~F .
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