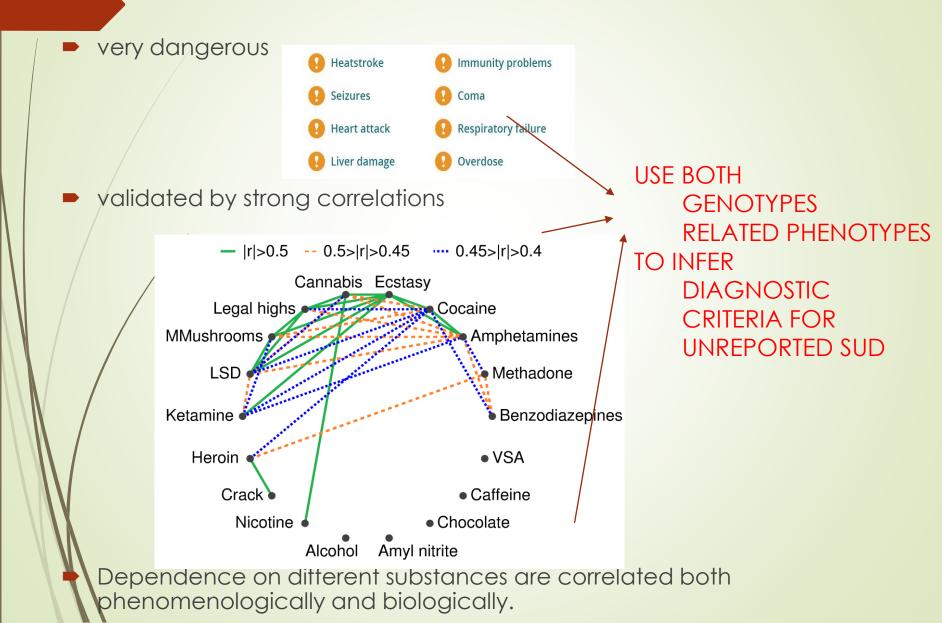
Collaborative Phenotype Inference from Comorbid Substance Use Disorders and Genotypes

BIBM 2017@Kansas City

Presenter: Jin Liu University of Connecticut

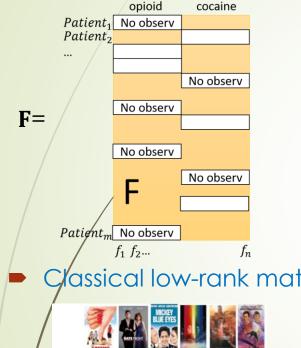
Joint work with Jiangwen Sun, Xinyu Wang, Henry Kranzler, Joel Gelernter and Jinbo Bi

Comorbid substance use disorders(CSUD)



Inferring SUD diagnostic criteria

Our phenotypic imputation problem



additional useful information: associated genetic variants; known similarities between comorbid disorders. Often referred to as side or auxiliary information in matrix completion

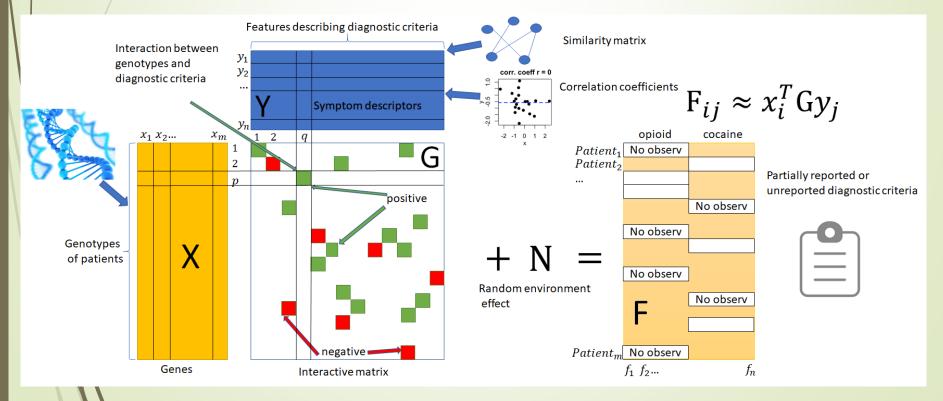
Classical low-rank matrix completion problem

Optimization Problem:

 $\min_{\mathbf{E}} \|\mathbf{E}\|_{*} \text{ subject to } R_{\Omega}(\mathbf{E}) = R_{\Omega}(\mathbf{F})$ where Ω is the set of indices of **observed entries** in **F** and $\|\cdot\|_{*}$ computes the **nuclear norm (low-rank regularizer)**.

The proposed method

- Our collaborative inference method of CSUD diagnostic criteria using side information.
- Side information of patients: Genotypes
- Side information of diagnostic criteria: Sampled Corr Coef matrix; Similarity matrix



The proposed method

$$\min_{\mathbf{G}} \frac{1}{2} \| \mathbf{X}^{\mathrm{T}} \mathbf{G} \mathbf{Y} - \mathbf{E} \|_{F}^{2} + \lambda_{G} g(\mathbf{G}) + \lambda_{E} \| \mathbf{E} \|_{*}$$

s.t. $R_{\Omega}(\mathbf{E}) = R_{\Omega}(\mathbf{F})$

The proposed method uses a low-rank matrix E to directly approximate matrix F and then estimates E from matrix X and Y.

Proposed method

$$\min_{\mathbf{G}} \frac{1}{2} \| \mathbf{X}^{\mathrm{T}} \mathbf{G} \mathbf{Y} - \mathbf{E} \|_{F}^{2} + \lambda_{G} g(\mathbf{G}) + \lambda_{E} \| \mathbf{E} \|_{*},$$

s.t. $R_{\Omega}(\mathbf{E}) = R_{\Omega}(\mathbf{F})$

The proposed method uses a low-rank matrix E to directly approximate matrix F and then estimates E from matrix X and Y.

The proposed model can identify crucial interactions between specific genotypes and diagnostic criteria by enforcing the sparsity in **G**. $(g(\mathbf{G}) = \|\mathbf{G}\|_1)$

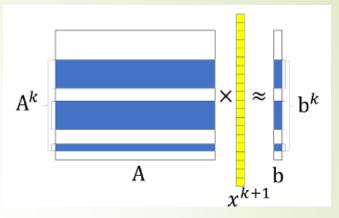
Adaptive LADMM Algorithm

- We propose a new stochastic Linearized Alternative Direction Method of Multipliers (StoLADMM) algorithm
 - by substituting $\mathbf{C} = \mathbf{E} \mathbf{X}^{\mathrm{T}} \mathbf{G} \mathbf{Y}$.
- The augmented Lagrangian function is given by $\mathcal{L}(\mathbf{E}, \mathbf{G}, \mathbf{C}, \mathbf{M}_{1}, \mathbf{M}_{2}, \beta)$ $= \frac{1}{2} \|\mathbf{C}\|_{F}^{2} + \lambda_{G} \|\mathbf{G}\|_{1} + \lambda_{E} \|\mathbf{E}\|_{*} + \langle \mathbf{M}_{1}, R_{\Omega}(\mathbf{E} - \mathbf{F}) \rangle$ $+ \langle \mathbf{M}_{2}, \mathbf{E} - \mathbf{X}^{\mathrm{T}} \mathbf{G} \mathbf{Y} - \mathbf{C} \rangle + \frac{\beta}{2} \|R_{\Omega}(\mathbf{E} - \mathbf{F})\|_{F}^{2}$ $+ \frac{\beta}{2} \|\mathbf{E} - \mathbf{X}^{\mathrm{T}} \mathbf{G} \mathbf{Y} - \mathbf{C}\|_{F}^{2}$

Solve each variable alternatively.

Our efficient stochastic algorithm

- Effectiveness
- 1. convergence in expectation
- 2. global optimal solution for our convex optimization problem
- Efficiency
- 1. Save memory costs
- 2. Can utilize parallel computing to speed up the algorithm
- 3. Without sacrificing performance notably.



Algorithm 1 The StoLADMM algorithm to solve \mathbf{C}^k , \mathbf{G}^k , \mathbf{E}^k , k = 1, ..., K

- **Input:** X, Y and $R_{\Omega}(\mathbf{F})$ with parameters λ_G , λ_E , τ_A , τ_B , ρ and β_{max} .
- Output: C, G, E;
- 1: Initialize $\mathbf{E}^0, \mathbf{G}^0, \mathbf{M}_1^0, \mathbf{M}_2^0$. Compute $\mathbf{A} = \mathbf{Y}^T \otimes \mathbf{X}^T$. k = 0,

- 2: $\mathbf{C}^{k+1} = \frac{\beta}{\beta+1} (\mathbf{E}^k \mathbf{X}^T \mathbf{G}^k \mathbf{Y} + \mathbf{M}_2^k / \beta);$ 3: $\mathbf{G}^{k+1} = reshape(\max(|\mathbf{g}^k - f_1^k / \tau_A| - \frac{\lambda_G}{\tau_A \beta}, 0) \odot sgn(\mathbf{g}^k - f_1^k / \tau_A))$ where f_1^k can be computed by (5);
- 4: $\mathbf{E}^{k+1} = SVT(\mathbf{E}^k (f_2^k + f_3^k)/(2\tau_B), \lambda_E/2(\beta\tau_B))$ where f_2^k and f_3^k can be computed by (6);
- 5: $\mathbf{M}_1^{k+1} = \mathbf{M}_1^k + \beta(R_\Omega(\mathbf{E}^{k+1} \mathbf{F})).$
- 6: $\mathbf{M}_2^{k+1} = \mathbf{M}_2^k + \beta (\mathbf{E}^{k+1} \mathbf{X}^T \mathbf{G}^{k+1} \mathbf{Y} \mathbf{C}^{k+1}).$
- 7: k = k + 1 until convergence; Return C, G, E;

Compared methods:

MAXIDE

M. Xu, R. Jin, and Z. hua Zhou. Speedup matrix completion with side information: Application to multi-label learning. Advances in Neural Information Processing Systems 26, pages 2301–2309, 2013

IMC

N. Natarajan and I. S. Dhillon. Inductive matrix completion for predicting gene-disease associations. Bioinformatics, 30(12):i60-i68, 2014

DirtyIMC

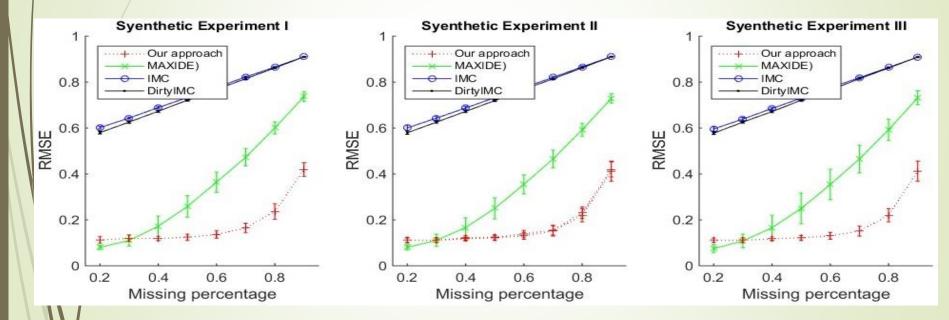
K.-Y. Chiang, C.-J. Hsieh, and I. S. Dhillon. Matrix completion with noisy side information. Advances in Neural Information Processing Systems 28, pages 3429–3437, 2015.

The relative mean squared error (**RMSE**) is used as the performance measurement. $RMSE = \frac{\left\|R_{\overline{\Omega}}(\mathbf{X}^{T}\mathbf{G}\mathbf{Y} - \mathbf{F})\right\|_{F}^{2}}{\|R_{\overline{\Omega}}(\mathbf{F})\|_{F}^{2}}$

- Synthetic Datasets:
 - X and Y were generated from Gaussian, Poisson and Gamma distributions.
 - G contains 20% of non-zero components.
 - $\mathbf{F} = \mathbf{X}^{\mathrm{T}}\mathbf{G}\mathbf{Y} + \mathbf{N}$ where **N** represents the noise.
 - Then, the values of F were dropped by [20% – 80%] to test the recovery rate of the methods.

Synthetic Datasets:

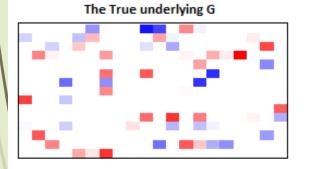
RMSE for all compared methods

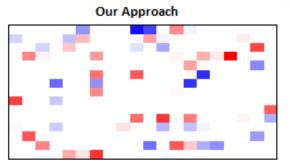


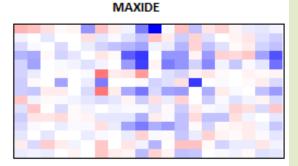
Synthetic Datasets:

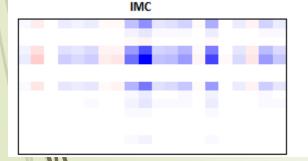
RMSE for all compared methods

Recovery of true underlying G.

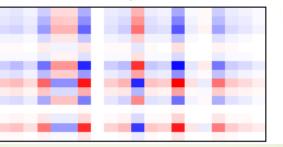








DirtyIMC



Dirtyl

Synthetic Datasets

Cormorbid Substance Use Data:

- A total of 7,189 subjects were aggregated from family and casecontrol based genetic studies of cocaine use disorder (CUD) and opioid use disorder (OUD).
- The 383 genetic variants identified in our GWAS were used as side feature matrix X with the size 7189 by 383.
- The correlations between 22 CUD and OUD symptoms formed a correlation matrix which was used as side features matrix Y with the size 22 by 22.
- We randomly removed the phenotypes of q% CSUD patients associated with either opioid or cocaine use (not both). Then our partially observed F is the matrix with the size **7189 by 22**, which needs inference.

Synthetic Datasets

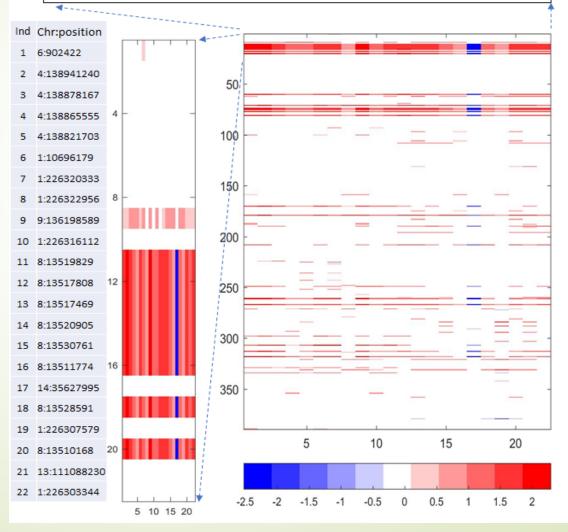
Cormorbid Substance Use Data:

\overline{q}		StoLADMM	LADMM	DirtyIMC	IMC	MAXIDE	BM
20%	RMSE	0.236	0.231	0.297	0.230	0.235	0.567
	time(s)	30.938	664.515	45.366	21.053	4732.718	NaN
40%	RMSE	0.226	0.234	0.298	0.235	0.236	0.582
	time(s)	29.953	982.212	21.063	20.803	3772.202	NaN
60%	RMSE	0.228	0.236	0.301	0.237	0.235	0.581
	time(s)	28.719	815.841	20.269	36.737	4718.916	NaN
80%	RMSE	0.236	0.237	0.303	0.239	0.241	0.585
	time(s)	30.547	877.886	23.906	32.872	4011.692	NaN
100%	RMSE	0.223	0.239	0.303	0.246	0.242	0.574
	time(s)	30.172	489.770	22.922	24.653	3695.292	NaN

TABLE II: The inference results on the Opioid-Cocaine data.

Interaction Matrix

P1: Larger/longer Cocuse than intended P12: Larger/longer Opi use than intended P2: Failed efforts to stop on Coc P13: Failed efforts to stop on Opi P3: Much time spent in Coc related activities P14: Much time spent in Opi related activities P4: Strong desire to use Coc P15: Strong desire to use Opi P5: Coc-effects interfered with life P16: Opi-effects interfered with life P6: Coc use despite of its interference P17: Opi use despite of its interference P7: Major activities reduced by Cocuse P18: Major activities reduced by Opi use P8: Physical hazard caused by Coc use P19: Physical hazard caused by Opi use P9: Coc use knowing it threatening health P20: Opi use knowing it threatening health P10: Coc tolerance P21: Opitolerance P11: Coc withdrawal syndrome P22: Opi withdrawal syndrome



Conclusion

- We adopted a matrix completion approach to infer SUD criteria using both correlation among criteria of different conditions and genotypes as side information.
- By imposing sparse prior on the model parameters, the method can find a sparse interactive matrix that connects specific genotypes to diagnostic criteria.
- We introduced an efficient stochastic LADMM algorithm to solve the optimization problem in this method.
- The empirical evaluation shows that our method can significantly enhance the running efficiency with minimal adverse effects on the imputation accuracy.

Any Questions?

Thank you.